
1

368

REFCARD | AUGUST 2022

Getting Started With
OpenTelemetry
Observability and Monitoring for
Modern Applications

JOANA CARVALHO
PERFORMANCE ENGINEER, POSTMAN

CONTENTS

• Overview of OpenTelemetry

• OpenTelemetry Architecture

 − APIs and SDKs

 − Collector

 − OpenTelemetry Protocol

• OpenTelemetry Key Concepts

 − Instrumentation

 − Telemetry Sources

• Getting Started With OpenTelemetry

 − Configuration

 − Collect Traces Using OpenTelemetry

 − Common Pitfalls of Migrating Legacy
Applications to OpenTelemetry

• Conclusion

The mass migration to the cloud brings new architecture paradigms

and challenges. The many components involved make monitoring and

correlating signals from all elements difficult. OpenTelemetry comes

to aid with a vendor-agnostic telemetry specification that allows

developers in any stack to gather telemetry data. OpenTelemetry

aims to be the standard for implementing and enabling effective

observability. This Refcard introduces its core architecture

components, key concepts and features, and how to set them up for

tracing and exporting telemetry data.

OVERVIEW OF OPENTELEMETRY
Observability, or "o11y" for friends, empowers teams to ask questions

about their system and business and receive clear answers driven by

the signals collected. Telemetry signals — logs, metrics, traces, events,

and metadata — work together to correlate individual systems' health

with the business' overall health, giving developers and operations

teams a greater understanding.

A common misconception is that observability replaces monitoring;

quite the contrary — observability amplifies its potential.

• Monitoring is a process that collects and analyzes telemetry

data for specific metrics and acts according to the objectives

defined (e.g., alerts, notifies).

• Observability is the ability to ask questions about the holistic

state of a system through the signals it generates.

Monitoring takes you a long way, but if the telemetry is ineffective,

insufficient, or inaccurate, it will not take you to the level you want

— observability.

In 2016, OpenTracing became a Cloud Native Computing Foundation

(CNCF) project, and in 2018, Google open sourced OpenCensus.

These standards complemented each other, aiming to make

observability easy and widely adopted. However, having the

community divided to maintain both projects would lead to poor

adoption, contribution, and support. To avoid this, in 2019, it was

announced that both projects would converge into OpenTelemetry and

join the CNCF.

OpenTelemetry (OTel) quickly became the de facto standard for flexible

full-stack observability in cloud-native applications. Its vendor-neutral

standards, libraries, integrations, APIs, and software development kits

(SDKs) give developers an independent specification for telemetry.

As with any open-source software, the maturity level of each component

will depend on the language and the interest taken by that particular

community — the more popular the language or the framework, the

more support and maturity it'll reach.

https://dzone.com/refcardz?ref=evergreen-box
https://www.cncf.io/announcements/2019/10/31/cloud-native-computing-foundation-announces-jaeger-graduation/

REFCARD | GETTING STARTED WITH OPENTELEMETRY

REFCARD | AUGUST 2022 2

OPENTELEMETRY ARCHITECTURE
OpenTelemetry provides a library framework that receives, processes,

and exports telemetry, which requires a back end to receive and store

the data. In the following diagram, you can see how all elements work

together, and we'll go into more detail about each one.

Figure 1: OpenTelemetry pipeline

Source: Schema based on "OpenTelemetry: beyond getting started"

APIS AND SDKS
OpenTelemetry APIs define how applications speak to one another and

are used to instrument an application or service. They are generally

available for developers to use across popular programming languages

(e.g., Ruby, Java, Python). Because they are part of the OpenTelemetry

standard, they will work with any OpenTelemetry-compatible back-

end system, eliminating the need to re-instrument in the future. The

SDK is also language specific, providing the bridge between APIs and

the exporter. It can sample traces and aggregate metrics.

COLLECTOR
The OpenTelemetry Collector is like a bakery: Regardless of how the raw

ingredients are processed, you can still shape your bread in whatever

way you fancy. This means you don't need to alter your code to send

data into whatever back end you use for storage and visualization.

Figure 2: Inside the OTel Collector pipeline

The Collector's job is to process, filter, aggregate, and batch

telemetry, giving developers greater flexibility for receiving, shaping,

and sending data to multiple back ends. It works with two primary

deployment models:

• As an Agent that lives within the application or in the

same host as the application, acting as a source of data

for the host (by default, OpenTelemetry assumes a local

collector is available)

• As a Gateway working as a data pipeline that receives,

exports, and processes telemetry

Figure 3: Collector Agent and Gateway setup

The Collector consists of three components: receivers, processors,

and exporters. Receivers (e.g., Jaeger, Prometheus) are in charge

of pushing or pulling the applications' signals by listening for calls

on particular ports on the Collector. They work with both gRPC and

HTTP protocols. A complete list of receivers for specific scenarios or

frameworks can be found on GitHub.

Processors sit between receivers and exporters; they enable us to

shape the data by filtering, formatting, and enriching it before it goes

through the exporter to a back end. Common use cases include data

sanitization to remove sensitive or private information, exporting

metrics from spans, or deciding which signals are saved to the back

end. There are many supported processors available, or you can

develop your own. They work sequentially, so the configuration order

is important. Although processors are not required, some might be

recommended based on the data source.

Exporters can push or pull data into one or multiple configured back

ends or destinations (e.g., Kafka, OTLP). They work by transforming

the data into a different format if needed and sending it to the

endpoint defined. An exporter creates a layer of separation between

https://opentelemetry.io/
https://medium.com/opentelemetry/opentelemetry-beyond-getting-started-5ac43cd0fe26
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/receiver
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/processor

REFCARD | GETTING STARTED WITH OPENTELEMETRY

REFCARD | AUGUST 2022 3

instrumentation and the back-end configuration so users can switch

back ends without re-instrumenting the code. It supports either the

HTTP or gRPC protocol. Popular exporters include Jaeger, Prometheus,

and Zipkin, along with a vast list of other options.

To configure the three Collector components, we must specify the

parts that will compose our pipeline. We can do so by writing the

configuration in a YAML format and stating what elements will be

configured in the Collector using the service section, as shown in the

example below:

otel-collector-config.yml

receivers:

 otlp:

 protocols:

 http:

 endpoint: 0.0.0.0:4318

 grpc:

 endpoint: 0.0.0.0:4317

processors:

 batch:

 timeout: 1s

exporters:

 logging:

 loglevel: info

 extensions:

 health_check:

 pprof:

 endpoint: :1888

 zpages:

 endpoint: :55679

service:

 extensions: [pprof, zpages, health_check]

 pipelines:

 traces:

 receivers: [otlp]

 processors: [batch]

 exporters: [logging]

As you can see on the configuration file above, we set the OTLP

receiver to add HTTP and gRPC endpoints in the collector. To process

our data, we use a batch processor that will compress and segment

it; it's configurable for batching by time and size. Using the batch

processor is highly recommended, as it reduces the number of

outgoing connections.

We also define two exporters: logging that will print into the console

and Jaeger, where we'll send the traces. The service section is where

we set up how all the previous elements come together in the pipeline.

We only refer to traces in this example, but we could also have metrics

or logs.

OPENTELEMETRY PROTOCOL
The OpenTelemetry Protocol (OTLP) is one of the reasons for

OpenTelemetry's success. It's an agnostic protocol specification that

defines the encoding for data and the transport protocol for sending

traces, metrics, and logs. It can send data from the SDK to the Collector

and from the Collector to the chosen back end. Using the Collector

elements, we can abstract from third-party frameworks by configuring

the proper receiver.

OPENTELEMETRY KEY CONCEPTS
All observability journeys must begin with instrumenting an app to

emit signals from services as they execute. OpenTelemetry gives you

several components that'll help you add proper instrumentation to

services and have each operation execution result in one or multiple

spans, metrics, or logs.

INSTRUMENTATION
There are mainly two ways to instrument apps using OpenTelemetry:

manual and auto-instrumentation. These become available by adding

the OpenTelemetry SDK to your project. Auto-instrumentation makes it

possible to collect application-level telemetry without manual changes

to the code — it allows tracing a transaction's path as it navigates

different components, including:

• Application frameworks

• Communication protocols

• Data stores

Manual instrumentation lets you decide how and where to add

observability code to your project. Four instrumentation libraries

are available:

• Core contains all language instrumentation libraries available.

• Instrumentation adds to the Core library by adding extra

language-specific capabilities.

• Contrib includes additional helpful libraries and standalone

utilities that don't fit the scope of the previous two.

• Distribution adds vendor-specific customization.

Not all languages will separate their instrumentation libraries as above.

Some can live within the same repository, while others are split into

additional ones.

LANGUAGES AND SUPPORT STATUS
OpenTelemetry is a collection of tools, APIs, and SDKs available in

multiple languages. Several dedicated groups are working to maintain

all these components and their language implementations. Some are

dedicated to a vertical, working on signals, while others support the

implementations and extensions for languages.

Development speed depends on multiple factors like team size and

availability, which lead to projects being in various stages of maturity

— Draft, Experimental, Stable, and Deprecated. Stable means a project

is production-ready and is receiving long-term support. Table 1 on

the next page shows the current maturity status of OpenTelemetry

elements for some of the languages it supports.

https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/exporter
https://github.com/open-telemetry/opentelemetry-collector/tree/main/processor/batchprocessor
https://opentelemetry.io/docs/instrumentation/

REFCARD | GETTING STARTED WITH OPENTELEMETRY

REFCARD | AUGUST 2022 4

Table 1: OpenTelemetry code instrumentation state

LANGUAGE TRACING METRICS LOGGING

Java Stable Stable Experimental

.NET Stable Stable ILogger: Stable
OTLP log exporter:
Experimental

Go Stable Experimental Not yet implemented

JS Stable Development Roadmap

Python Stable Experimental Experimental

TELEMETRY SOURCES
Telemetry data, or signals, are any output collected from the system,

and when analyzed together, this output provides a view of the

relationships and dependencies of the distributed system. Currently,

OpenTelemetry supports three categories of telemetry: logs, traces,

and metrics. Hopefully, it will extend support for more signals, like

profiling or user data.

METRICS
A metric is a numerical representation of a value calculated or

aggregated for a service captured at runtime (e.g., size of a message

broker, number of errors per second, process memory utilization, error

rate). The moment one of these measurements is captured is known as

a metric event — it comprises not only the measurement but also the

time of capture and associated metadata.

Application and request metrics are essential indicators of availability

and performance. The OpenTelemetry Metrics API processes the raw

measurements, summarizing them to give developers visibility into

their services' operational metrics.

In the Metrics API, you have six available instruments that are

associated with a specific meter at creation time. These can be

synchronous or asynchronous; synchronous instruments are invoked

inline with the application code execution, while asynchronous

instruments allow the user to register a callback function responsible

for reporting the measurements.

In this diagram, you can see the operations that the instruments call,

as well as the type of value that is captured:

Figure 4: Metrics API available Instruments

TR ACES
A trace represents the flow of a single transaction or request as it goes

through the system. They provide a holistic view of the chain of events

triggered by requests and are defined by a tree of nested spans — one

for each unit of work they represent and a parent span. In .NET, you

might use the OTel Tracing API or the .NET System.Diagnostics.Activity

API that is also supported. Be aware that in the .NET library, the terms

used differ from the Tracing API.

Figure 5: Representation of a trace with a tree of spans

To better understand the objects and actions you will add to your code,

let's look at the main concepts that the OpenTelemetry SDK and API will

implement for traces:

• TracerProvider is a factory for Tracers; it's initialized once

and lives for the duration of the application's lifecycle. It's the

first step in tracing with OpenTelemetry. In some SDKs, a global

Tracer Provider already exists (.NET).

• Tracer creates spans containing supplementary information

about what is happening for a given operation. It is created from

Tracer Providers, and in some SDKs, a global Tracer already

exists (Python, .NET).

• Trace Exporter sends traces to a back end; it can be standard

output like the OpenTelemetry Collector or any open-source or

vendor back end of your choice.

• Trace Context

This is an example of a trace with three spans; the information inside

the spans is shown in the next section:

{

 "data": [

 {

 "traceID": "81289be65e00618d84366dfe2f7fc1a2",

 "spans": [

 {

 "traceID":

"81289be65e00618d84366dfe2f7fc1a2",

 "spanID": "e03e8cca690f81c1",

 "operationName": "read_json_from_file",

CODE CONTINUES ON NEXT PAGE

https://docs.microsoft.com/dotnet/api/microsoft.extensions.logging.ilogger
https://github.com/open-telemetry/opentelemetry-dotnet/blob/main/src/OpenTelemetry.Exporter.OpenTelemetryProtocol/README.md#otlp-logs
https://www.cncf.io/blog/2022/05/31/what-is-continuous-profiling/
https://opentelemetry.io/docs/reference/specification/metrics/api/
https://opentelemetry.io/docs/reference/specification/metrics/api/#synchronous-instrument-api
https://opentelemetry.io/docs/reference/specification/metrics/api/#asynchronous-instrument-api
https://opentelemetry.io/docs/reference/specification/trace/api/#span-creation
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.activity?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.activity?view=net-6.0
https://opentelemetry.io/docs/reference/specification/trace/api/#tracerprovider
https://opentelemetry.io/docs/reference/specification/trace/api/#tracer
https://opentelemetry.io/docs/concepts/signals/traces/#trace-exporters
https://opentelemetry.io/docs/concepts/signals/traces/#trace-context

REFCARD | GETTING STARTED WITH OPENTELEMETRY

REFCARD | AUGUST 2022 5

 }

 // ...

 {

 "traceID":

"81289be65e00618d84366dfe2f7fc1a2",

 "spanID": "75473187e1bc7579",

 "operationName": "word-by-language"

 // ...

 },

 {

 "traceID":

"81289be65e00618d84366dfe2f7fc1a2",

 "spanID": "45c0d587ebdddf60",

 "operationName": "/words"

 // ...

 }

],

 "processes": {

 "p1": {

 "serviceName": "untranslatable-python",

 "tags": []

 }

 },

 "warnings": null

 }

],

 "total": 0,

 "limit": 0,

 "offset": 0,

 "errors": null

}

SPANS
In OpenTelemetry, a span includes the following information:

• Name

• Start and End Timestamps

• Span Context is an object that can't be changed after

creation, containing:

 − Its own ID

 − Trace ID – a unique 16-byte array that identifies the trace

that the span is part of, and all spans contained in that

trace share this ID.

 − Trace Flags – present in all traces and, through binary

encoded data, provide more details on the trace.

 − Trace State – a key-value list carrying vendor-specific

trace information, so multiple tracing systems can

participate in a trace.

• Span Attributes are key-value pairs added to a span to help

analyze the trace data. The extra information will help you

better understand and search for specific traces.

• Span Events are typically used to mark a singular point

in time during the span's duration, similar to adding an

annotation on a span.

• Span Links associate one span with one or more, implying

some relationship; they are optional but an excellent way

of associating trace spans.

• Span Status

Figure 6: Span lifecycle

To help you contextualize and add extra information about what

happens during the work that's tracked by a span, OpenTelemetry

provides Attributes and Span Events. This is an example of a span with

two events:

{

 "traceID": "81289be65e00618d84366dfe2f7fc1a2",

 "spanID": "e03e8cca690f81c1",

 "operationName": "read_json_from_file",

 "references": [
 {
 "refType": "CHILD_OF",

 "traceID": "81289be65e00618d84366dfe2f7fc1a2",

 "spanID": "75473187e1bc7579"
 }
],

 "startTime": 1659199980429164,

 "duration": 143,

 "tags": [

 {
 "key": "otel.library.name",

 "type": "string",

 "value": "data.file_reader"
 },

CODE CONTINUES ON NEXT PAGE

REFCARD | GETTING STARTED WITH OPENTELEMETRY

REFCARD | AUGUST 2022 6

 {
 "key": "span.kind",

 "type": "string",

 "value": "internal"
 },

 {

 "key": "internal.span.format",

 "type": "string",

 "value": "proto"

 }

],

 "logs": [

 {

 "timestamp": 1659199980429173,

 "fields": [

 {

 "key": "event",

 "type": "string",

 "value": "Opening data file."
 }
]
 },
 {

 "timestamp": 1659199980429301,

 "fields": [

 {

 "key": "event",

 "type": "string",

 "value": "Finished reading data file."
 }
]
 }

],

 "processID": "p1"
}

In OpenTelemetry, the Tracer creates the spans. It's an object that

tracks the currently active span while allowing you to create new spans.

As spans start and complete, the Tracer dispatches them to the back

end you configured on the Collector.

LOGS
A log is recorded as lines of text that describe a timestamped event

and can be output in plain text, structured text (like JSON), or binary

code. They result from a code execution block and are convenient

for troubleshooting systems less prone to instrumentation (e.g.,

databases, load balancers). OpenTelemetry assumes that any data

that doesn't belong to a trace or metric must be a log.

BAGGAGE
As the name hints, Baggage refers to contextual information passed on

between spans. It's represented in OpenTelemetry by a key-value store

that lives in a Trace Context, making those values available to all spans

created within that trace. OpenTelemetry uses Context Propagation

to pass around Baggage and exists in all libraries, so you don't have

to implement it yourself. Baggage is designed to be language agnostic

so that it can travel through stacks. Transporting downstream values

that are only available higher in the stack makes it easier to filter when

searching in your back end.

Figure 7: Baggage passing between two services

GETTING STARTED WITH
OPENTELEMETRY
Now, with more context about the main concepts, architecture, and

components of OpenTelemetry, we are ready to start tracing. We will

instrument two APIs; one will be built in .NET and the other in Python.

They will be designed to have the same endpoints and the same

purpose. It will return untranslatable words that exist only in one

language at random or by language. In this diagram, you can follow

each API's simple flows:

Figure 8: Untranslatable API flow chart

https://opentelemetry.io/docs/concepts/signals/baggage/
https://opentelemetry.io/docs/concepts/signals/traces/#context-propagation

REFCARD | GETTING STARTED WITH OPENTELEMETRY

REFCARD | AUGUST 2022 7

Different programming language paradigms present us with different

challenges, so I've selected to show examples in two languages, Python

and .NET — not to highlight the challenges but to demonstrate the

consistency of OpenTelemetry across stacks. Please note that all .NET

examples are for ASP.NET Core, and the configuration might differ for

the .NET Framework.

CONFIGURATION
First, imagine that we already have a project created for whatever

language we will use with the basic structure. You will install (Python)

or add the necessary libraries (.NET) to your project by running the

following commands. For Python, if using setuptools, you can add this

library as an installation requirement.

Python:

$ pip install opentelemetry-distro

.NET:

$ dotnet add package OpenTelemetry --prerelease

$ dotnet add package OpenTelemetry.Instrumentation.

AspNetCore --prerelease

$ dotnet add package OpenTelemetry.Extensions.

Hosting --prerelease

These commands will also add the SDK and API for OpenTelemetry as

a dependency.

COLLECT TRACES USING OPENTELEMETRY
In OTel, we can perform tracing operations on a Tracer. We can obtain

it by using GetTracer() in the global Tracer Provider, returning an

object that can be used for tracing operations. However, when using

auto-instrumentation and depending on the language, that might not

be necessary.

ADD A SIMPLE TRACE WITH AUTOMATIC INSTRUMENTATION
Not all frameworks offer automatic instrumentation, but OTel advises

using it for those that do. Not only does it save lines of code, but it also

provides a baseline for telemetry with little work. It works by attaching

an agent to the running application and extracting tracing data. When

considering auto-instrumentation, remember that it's not as flexible as

manual instrumentation and only captures basic signals.

Let us look at code implementations. Below, we have the basic setup for

auto-instrumenting our API.

Python:

app.py

from flask import Flask, Response

app = Flask(__name__)

@app.route("/")

@app.route("/home")

@app.route("/index")

def index():

 return Response("Welcome to Untranslatable!",

status=200)

Add more actions here

if __name__ == "__main__":

 app.run(debug=True, use_reloader=False)

.NET:

// Program.cs

using Microsoft.AspNetCore.Builder;

using Microsoft.Extensions.DependencyInjection;

using OpenTelemetry.Resources;

using OpenTelemetry.Trace;

var serviceName = "untranslatable-dotnet";

var serviceVersion = "1.0.0";

var builder = WebApplication.CreateBuilder(args);

var resource = ResourceBuilder.CreateDefault().

AddService(serviceName);

builder.Services.

AddOpenTelemetryTracing(tracerProviderBuilder =>

 tracerProviderBuilder

 .SetResourceBuilder(resource)

 .AddSource(serviceName)

 .SetResourceBuilder(

 ResourceBuilder.CreateDefault()

 .AddService(serviceName: serviceName,

serviceVersion: serviceVersion))

 .AddAspNetCoreInstrumentation()
 .AddConsoleExporter()

).AddSingleton(TracerProvider.Default.

GetTracer(serviceName));

var app = builder.Build();

//… Rest of the setup and actions here

In Python, we don't need to add anything to the code to extract basic

metrics, but I'd recommend using the FlaskInstrumentor that adds

flask-specific features support. You can add FlaskInstrumentor().

instrument_app(app) after instantiating Flask and add extra

configurations as needed.

In .NET, we need to configure necessary OpenTelemetry settings as

the exporter, instrumentation library, and constants. Like in Python,

adding the OpenTelemetry.Instrumentation.AspNetCore package

will provide extra features specific to the framework, adding to the

base instrumentation library.

The instrumentation library for ASP.NET Core will automatically create

spans and traces from inbound HTTP requests.CODE CONTINUES IN NEXT COLUMN

https://github.com/open-telemetry/opentelemetry-python-contrib/tree/main/instrumentation/opentelemetry-instrumentation-flask
https://github.com/open-telemetry/opentelemetry-dotnet/blob/main/src/OpenTelemetry.Instrumentation.AspNetCore/README.md
https://opentelemetry.io/docs/concepts/instrumenting/

REFCARD | GETTING STARTED WITH OPENTELEMETRY

REFCARD | AUGUST 2022 8

To run our applications with automatic instrumentation and start

collecting and exporting telemetry, run the commands below.

Python:

$ python3 -m venv .

$ source ./bin/activate

$ pip install .

$ opentelemetry-bootstrap -a install

$ opentelemetry-instrument \

 --traces_exporter console \

 --metrics_exporter console \

 flask run

.NET:

$ dotnet run Untranslatable.Api.csproj

These commands will start the instrument agent and set up the specific

instrumentation libraries. Now, a trace will be printed to the console

whenever we send a request.

We can see the examples of output below.

Python:

{

 "name": "/words",

 "context": {

 "trace_id": "0x55072f6cc00531a489613e782942f75a",

 "span_id": "0x28135f1ccf37d85f",

 "trace_state": "[]"

 },

 "kind": "SpanKind.SERVER",

 "parent_id": null,

 "start_time": "2022-07-28T10:14:38.951442Z",

 "end_time": "2022-07-28T10:14:38.952775Z",

 "status": {

 "status_code": "UNSET"

 },

 "attributes": {

 "http.method": "GET",
 "http.server_name": "127.0.0.1",

 "http.scheme": "http",

 "net.host.port": 8000,

 "http.host": "127.0.0.1:8000",

 "http.target": "/words?language='es'",

 "net.peer.ip": "127.0.0.1",
 "http.user_agent": "python-requests/2.28.1",

 "net.peer.port": 58618,

 "http.flavor": "1.1",

 "http.route": "/words",

 "http.status_code": 200

 },

 "events": [],

"links": [],

 "resource": {

 "telemetry.sdk.language": "python",

 "telemetry.sdk.name": "opentelemetry",

 "telemetry.sdk.version": "1.12.0rc2",

 "telemetry.auto.version": "0.32b0",

 "service.name": "unknown_service"

 }

}

.NET:

Activity.TraceId:

e5e958c3cf3cfb4819605c102cdcfeba

Activity.SpanId: b75dd2c4abb36412

Activity.TraceFlags: Recorded

Activity.ActivitySourceName: OpenTelemetry.

Instrumentation.AspNetCore

Activity.DisplayName: words

Activity.Kind: Server

Activity.StartTime: 2022-07-28T10:10:42.9292690Z

Activity.Duration: 00:00:00.0004600

Activity.Tags:

 http.host: localhost:7104

 http.method: GET

 http.target: /words

 http.url: http://localhost:7104/

words?language=pt

 http.user_agent: python-requests/2.28.1

 http.route: words

 http.status_code: 200

 StatusCode : UNSET

Resource associated with Activity:

 service.name: untranslatable-dotnet

 service.instance.id: d715f73f-3147-4708-aec6-

98bd75a3ad77

Notice that in Python, the traces have many empty unknown values

by not adding any configuration.

ADD MANUAL INSTRUMENTATION
Manual instrumentation means adding extra code to the application

to start and finish spans, define payload, and add counters or events.

You can use client libraries and SDKs available for many programming

languages. Manual instrumentation and automatic instrumentation

should walk hand in hand as they complement each other.

Instrumenting your application with intention will augment

the automated instrumentation and provide better and deeper

observability. The implementation on the following page will add

traces to the APIs' methods.

CODE CONTINUES IN NEXT COLUMN

https://opentelemetry.io/registry/

REFCARD | GETTING STARTED WITH OPENTELEMETRY

REFCARD | AUGUST 2022 9

Python:

app.py

the libraries you already had

from opentelemetry import trace

from opentelemetry.sdk.resources import SERVICE_

NAME, Resource

from opentelemetry.sdk.trace import TracerProvider

from opentelemetry.sdk.trace.export import

BatchSpanProcessor, ConsoleSpanExporter

from opentelemetry.instrumentation.flask import

FlaskInstrumentor

resource = Resource(attributes={SERVICE_NAME:

"untranslatable-python"})

tracer_provider = TracerProvider(resource=resource)

trace.set_tracer_provider(tracer_provider)

tracer = trace.get_tracer(__name__)

trace.get_tracer_provider().add_span_processor(

 BatchSpanProcessor(ConsoleSpanExporter())

)

app = Flask(__name__)

FlaskInstrumentor().instrument_app(app)

@tracer.start_as_current_span("welcome-message")

@app.route("/")

def index():

 return Response("Welcome to Untranslatable!",

status=200)

@app.route("/words/random", methods=["GET"])

def word_random():

 with tracer.start_as_current_span("random-word"):

 data = read_json_from_file()

 words = json.dumps(data)

 random_word = random.choice(words)

 return Response(random_word,

mimetype="application/json", status=200)

if __name__ == "__main__":

 app.run()

.NET differs from other languages that support OpenTelemetry. The

System.Diagnostics API implements tracing, reusing existing objects

like ActivitySource and Activity to comply with OpenTelemetry

under the hood. For consistency, I've used the OpenTelemetry Tracing

Shim so that you can learn to use OpenTelemetry concepts.

If you want to see an implementation using Activities, you can

check this repo.

.NET:

// UntranslatableController.cs

using System.Linq;

using System.Threading;

using Microsoft.AspNetCore.Mvc;

using OpenTelemetry.Trace;

using Untranslatable.Api.Controllers.Extensions;

using Untranslatable.Api.Models;

using Untranslatable.Data;

using Untranslatable.Shared.Monitoring;

namespace Untranslatable.Api.Controllers

{

 [ApiController]

 [Route("words")]

 [Produces("application/json")]

 public class WordsController : ControllerBase

 {

 private readonly IWordsRepository

wordsRepository;

 private readonly Tracer tracer;

 public WordsController(Tracer tracer,

IWordsRepository wordsRepository)

 {

 this.wordsRepository = wordsRepository;

 this.tracer = tracer;

 }

 [HttpGet]

 public ActionResult<UntranslatableWordDto>

Get([FromQuery] string language = null,

CancellationToken cancellationToken = default)

 {

 using var span = this.tracer?.

StartActiveSpan("GetWordByLanguage");

 Metrics.Endpoints.WordsCounter.Add(1);

 using (Metrics.Endpoints.WordsTime.

StartTimer())

 {

 var allWords = Enumerable.

Empty<UntranslatableWord>();

 using (var childSpan1 = tracer.

StartActiveSpan("GetByLanguageFromRepository"))

 {

 childSpan1.AddEvent("Started

loading words from file...");

 allWords = wordsRepository.

GetByLanguage(language, cancellationToken);

 childSpan1.AddEvent("Finished

loading words from file...");

 }

CODE CONTINUES ON NEXT PAGE

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics
https://opentelemetry.io/docs/instrumentation/net/manual/#setting-up-an-activitysource
https://opentelemetry.io/docs/instrumentation/net/shim/
https://opentelemetry.io/docs/instrumentation/net/shim/
https://github.com/radra23/untranslatable/tree/main/dotnet

REFCARD | GETTING STARTED WITH OPENTELEMETRY

REFCARD | AUGUST 2022 10

 using (tracer.

StartActiveSpan("WordsToArray"))

 {

 var result = allWords.Select(w =>

w.ToDto()).ToArray();

 return Ok(result);

 }

 }

 }

 [HttpGet]

 [Route("random")]

 public ActionResult<UntranslatableWordDto>

GetRandom(CancellationToken cancellationToken =

default)

 {

 using var span = this.tracer?.

StartActiveSpan("GetRandomWord");

 Metrics.Endpoints.WordRandom.Add(1);

 using (Metrics.Endpoints.WordRandomTime.

StartTimer())

 {

 span.AddEvent("GetRandomWord");

 var word = wordsRepository.

GetRandom(cancellationToken);

 span.AddEvent("Done select Random

Word");

 return Ok(word.ToDto());

 }

 }

 }

}

STORE AND VISUALIZE DATA
Jaeger is a popular open-source distributed tracing tool initially

built by teams at Uber and then open sourced once it became part

of the CNCF family. It's a back-end application for tracing that allows

developers to view, search, and analyze traces. One of its most

powerful functionalities is visualizing request traces through services

in a system domain, enabling engineers to quickly pinpoint failures in

complex architectures.

Jaeger provides instrumentation libraries built on OpenTracing

standards. Using the specific exporter for Jaeger can offer a quick

win on observing your application. Here we will use the OTel exporter

and OpenTelemetry's Jaeger exporter to send OTel traces to a Jaeger

back-end service.

We've seen how the OTel collector works and is set up; Figure 9 in the

next column shows what using Jaeger's specific exporter pipeline

looks like.

Figure 9: OTel Collector pipeline

To start visualizing data, you need to set up Jaeger first. You can opt

for other setups, but I'll use the all-in-one image to install the collector,

query, and Jaeger UI in one container, using memory as default storage

(not for production environments).

This docker-compose file sets up all components, the network, the

ports needed, and the OTel Collector. The ports used in this example

are the default ports for each service. Run docker-compose up to start

the containers.

version: "3.5"

services:

 jaeger:

 networks:

 - backend

 image: jaegertracing/all-in-one:latest

 ports:

 - "16686:16686"

 - "14268"

 - "14250"

 otel_collector:

 networks:

 - backend

 image: otel/opentelemetry-collector:latest

 volumes:

 - "/YOUR/FOLDER/otel-collector-config.yml:/etc/

otelcol/otel-collector-config.yml"

 command: --config /etc/otelcol/otel-collector-

config.yml

 environment:

 - OTEL_EXPORTER_JAEGER_GRPC_INSECURE:true

 ports:

 - "1888:1888"

 - "13133:13133"

 - "4317:4317"

 - "4318:4318"

 - "55670:55679"

 depends_on:

 - jaeger
networks:

 backend:

https://www.jaegertracing.io/
https://opentelemetry.io/docs/reference/specification/trace/sdk_exporters/jaeger/
https://www.jaegertracing.io/download/

REFCARD | GETTING STARTED WITH OPENTELEMETRY

REFCARD | AUGUST 2022 11

You should now have two containers running, one for Jaeger and

another for the OTel collector:

NAMES STATUS

otel_collector-1 Up 23 minutes

jaeger-1 Up 23 minutes

If you navigate to http://localhost:16686, you should see Jaeger's

UI. Here you'll be able to explore the traces generated by your

instrumentation:

Figure 10: Jaeger's user interface

In the top left drop-down menu is the service we created. Services are

added to that list when we export traces to Jaeger. As I've mentioned,

there are two ways to export telemetry to Jaeger, using the OTLP or

directly to Jaeger using one of the supported protocols. We've already

seen how to configure the OTLP collector, so now all we have to

configure is the Collector to export to Jaeger:

receivers:

 otlp:

 protocols:

 http:

 endpoint: 0.0.0.0:4318

 grpc:

 endpoint: 0.0.0.0:4317

processors:

 batch:

 timeout: 1s

exporters:

 logging:

 loglevel: info

 jaeger:

 endpoint: jaeger:14250

 tls:

 insecure: true

extensions:

 health_check:

pprof:

 endpoint: :1888

 zpages:

 endpoint: :55679

service:

 extensions: [pprof, zpages, health_check]

 pipelines:

 traces:

 receivers: [otlp]

 processors: [batch]

 exporters: [logging, jaeger]

However, if setting up a collector seems daunting, or if you want to

start small using OpenTelemetry, sending data directly to a back end

can offer results reasonably fast without the Collector. Let's start by

installing OpenTelemetry's Jaeger exporter.

Python:

$ pip install opentelemetry-exporter-jaeger

.NET:

$ dotnet add package OpenTelemetry.Exporter.Jaeger

Again, in Python, we install the package on our host or the virtual

environment, whereas for .NET, we add it directly as a project

dependency. For Python, the package comes with both gRPC and

Thrift protocols.

Python:

app.cs

... other imports

from opentelemetry import trace

from opentelemetry.exporter.jaeger.thrift import

JaegerExporter

from opentelemetry.sdk.trace.export import

BatchSpanProcessor

from opentelemetry.sdk.trace import TracerProvider

from opentelemetry.sdk.resources import SERVICE_

NAME, Resource

resource = Resource(attributes={SERVICE_NAME:

"untranslatable-python"})

jaeger_exporter = JaegerExporter(

 agent_host_name="localhost",

 agent_port=6831,

 collector_endpoint="http://localhost:14268/api/

traces?format=jaeger.thrift",

)

tracer_provider = TracerProvider(resource=resource)

jaeger_processor = BatchSpanProcessor(jaeger_exporter)

tracer_provider.add_span_processor(jaeger_processor)

CODE CONTINUES IN NEXT COLUMN CODE CONTINUES ON NEXT PAGE

https://opentelemetry.io/docs/reference/specification/trace/sdk_exporters/jaeger/

REFCARD | GETTING STARTED WITH OPENTELEMETRY

REFCARD | AUGUST 2022 12

trace.set_tracer_provider(tracer_provider)

tracer = trace.get_tracer(__name__)

#... rest of initializations and actions

After installing the package, you can set the exporter in the

TracerProvider, which will be configured when tracing starts. Now

we will do the same for .NET.

After adding the NuGet package to the project, we will configure

the exporter. Here we will enable instrumentation using an

extension method — AddAspNetCoreInstrumentation — on

IServiceCollection and binding the Jaeger exporter.

.NET:

// Program.cs

// ... other imports and initializations

var serviceName = "untranslatable-dotnet";

var serviceVersion = "1.0.0";

var resource = ResourceBuilder.CreateDefault().

AddService(serviceName);

builder.Services.AddOpenTelemetryTracing(b => b

 // ... rest of setup code

 .AddJaegerExporter(o =>

 {
 o.AgentHost = "localhost";

 o.AgentPort = 6831;

 o.Endpoint = new Uri("http://localhost:14268/

api/traces?format=jaeger.thrift");

 })

).AddSingleton(TracerProvider.Default.

GetTracer(serviceName));

// ... rest of initializations and actions

Now run your APIs and make some requests. Go to Jaeger's UI, and you

should be able to see traces generated by those requests by selecting

the service name you specified and the operation you traced. Below,

you can see all traces captured within a time window and a trace's

detail and the associated spans:

Figure 11: All traces

Figure 12: Trace details

For complex systems and architectures, distributed tracing is

invaluable. You can quickly start exporting directly to Jaeger's back

end and adding OpenTelemetry auto-instrumentation to get the

telemetry data. With Jaeger, it's easier to find where the problem

occurred than through logs, allowing you to monitor transactions,

perform root cause analysis, optimize performance and latency, and

visualize service dependencies.

COMMON PITFALLS OF MIGRATING LEGACY
APPLICATIONS TO OPENTELEMETRY
Your services are probably already emitting telemetry data bound to

some observability back end. Changing your observability architecture

can be very painful:

• Re-instrumenting is time consuming

• Data will change

• Telemetry data must continue to flow, not allowing

blind stops in the system

• Traces have to remain linked

To migrate sequentially and as seamlessly as possible, you can use

the OpenTelemetry Collector as a proxy between your services and

the back ends you use. The Collector can replace most telemetry

services, removing the need for separate services for processing and

transmitting signals, making them redundant. Its telemetry pipeline's

flexibility lets you configure any compatible back end or service while

keeping your code agnostic.

Suppose you want to start migrating all your applications slowly. In

that case, the Collector can translate any input into the output you

need; you can move an application to OpenTelemetry and send data to

the same back end.

Note that when changing instrumentation libraries, the output

produced changes, so you might have to adjust your dashboards and

alerting systems.

https://www.nuget.org/packages/OpenTelemetry.Exporter.Jaeger

REFCARD | GETTING STARTED WITH OPENTELEMETRY

REFCARD | AUGUST 2022 13

CONCLUSION
Correlation does not equal causation — we must interpret the meaning

of every correlation. But who has the time? OpenTelemetry aims to

simplify data collection to focus on data analysis and processing

while creating a standard to abstract from the previous proprietary

and in-house solutions. Collecting and reviewing the data takes time;

automating this process is a massive win for observability.

As of writing this Refcard, below is the status of OpenTelemetry Signals:

Figure 13: Timeline of OpenTelemetry Signals status

With 93 pull requests per week and over 450 companies backing up

and maintaining the project, it provides access to an extensive set of

telemetry collection frameworks.

Having the community's backing means that you'll have to wait for

a shorter period from the need identification to the supply. By not

having product or profit concerns, the community can respond

promptly and offer support for new technologies without waiting for

vendors' support.

By standardizing how frameworks and applications collect and send

observability data, OpenTelemetry helps solve the challenges created

by the different stacks and back ends, giving teams a vendor-neutral,

portable, and pluggable solution that is easily configured with open-

source and commercial solutions alike.

Additional resources:

• OpenTelemetry Documentation – https://opentelemetry.io/docs

• OpenTelemetry DevStats Dashboard – https://opentelemetry.
devstats.cncf.io/d/8/dashboards

• OpenTelemetry implementation status per language –
https://github.com/open-telemetry/opentelemetry-
specification/blob/main/spec-compliance-matrix.md

• OpenTelemetry Twitter – https://twitter.com/opentelemetry

• "Full-Stack Observability Essentials" Refcard –
https://dzone.com/refcardz/full-stack-observability-essentials

• "Distributed Tracing in ASP.NET Core With Jaeger and Tye, Part
1: Distributed Tracing" – https://dzone.com/articles/distributed-
tracing-in-aspnet-core-with-jaeger-and

• Distributed Tracing Overview – https://www.logicmonitor.com/
support/tracing/getting-started-with-tracing

• "Getting Started With Log Management" Refcard –
https://dzone.com/refcardz/log-management

WRITTEN BY JOANA CARVALHO,
PERFORMANCE ENGINEER, POSTMAN

Joana has been a performance engineer for the
last 10 years. She analyzed root causes from user
interaction to bare metal, performance tuning,
and new technology evaluation. Her goal is to create solutions
to empower the development teams to own performance
investigation, visualization, and reporting so that they can, in a
self-sufficient manner, own the quality of their services. Currently
working at Postman, she mainly implements performance profiling,
evaluation, analysis, and tuning.

600 Park Offices Drive, Suite 300
Research Triangle Park, NC 27709

888.678.0399 | 919.678.0300

At DZone, we foster a collaborative environment that empowers developers and
tech professionals to share knowledge, build skills, and solve problems through
content, code, and community. We thoughtfully — and with intention — challenge
the status quo and value diverse perspectives so that, as one, we can inspire
positive change through technology.

Copyright © 2022 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or
by means of electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

https://opentelemetry.devstats.cncf.io/d/74/contributions-chart?orgId=1&var-period=w&var-metric=prs&var-repogroup_name=All&var-country_name=All&var-company_name=All&var-company=all&from=now-6M&to=now
https://opentelemetry.devstats.cncf.io/d/5/companies-table
https://opentelemetry.io/docs
https://opentelemetry.devstats.cncf.io/d/8/dashboards
https://opentelemetry.devstats.cncf.io/d/8/dashboards
https://github.com/open-telemetry/opentelemetry-specification/blob/main/spec-compliance-matrix.md
https://github.com/open-telemetry/opentelemetry-specification/blob/main/spec-compliance-matrix.md
https://twitter.com/opentelemetry
https://dzone.com/refcardz/full-stack-observability-essentials
https://dzone.com/articles/distributed-tracing-in-aspnet-core-with-jaeger-and
https://dzone.com/articles/distributed-tracing-in-aspnet-core-with-jaeger-and
https://www.logicmonitor.com/support/tracing/getting-started-with-tracing
https://www.logicmonitor.com/support/tracing/getting-started-with-tracing
https://dzone.com/refcardz/log-management

